Catalytic mechanism and performance of computationally designed enzymes for Kemp elimination.
نویسندگان
چکیده
A series of enzymes for Kemp elimination of 5-nitrobenzisoxazole has been recently designed and tested. In conjunction with the design process, extensive computational analyses were carried out to evaluate the potential performance of four of the designs, as presented here. The enzyme-catalyzed reactions were modeled using mixed quantum and molecular mechanics (QM/MM) calculations in the context of Monte Carlo (MC) statistical mechanics simulations. Free-energy perturbation (FEP) calculations were used to characterize the free-energy surfaces for the catalyzed reactions as well as for reference processes in water. The simulations yielded detailed information about the catalytic mechanisms, activation barriers, and structural evolution of the active sites over the course of the reactions. The catalytic mechanism for the designed enzymes KE07, KE10(V131N), and KE15 was found to be concerted with proton transfer, generally more advanced in the transition state than breaking of the isoxazolyl N-O bond. On the basis of the free-energy results, all three enzymes were anticipated to be active. Ideas for further improvement of the enzyme designs also emerged. On the technical side, the synergy of parallel QM/MM and experimental efforts in the design of artificial enzymes is well illustrated.
منابع مشابه
Kemp Eliminase Activity of Ketosteroid Isomerase.
Kemp eliminases represent the most successful class of computationally designed enzymes, with rate accelerations of up to 109-fold relative to the rate of the same reaction in aqueous solution. Nevertheless, several other systems such as micelles, catalytic antibodies, and cavitands are known to accelerate the Kemp elimination by several orders of magnitude. We found that the naturally occurrin...
متن کاملIterative approach to computational enzyme design.
A general approach for the computational design of enzymes to catalyze arbitrary reactions is a goal at the forefront of the field of protein design. Recently, computationally designed enzymes have been produced for three chemical reactions through the synthesis and screening of a large number of variants. Here, we present an iterative approach that has led to the development of the most cataly...
متن کاملEvaluation and ranking of enzyme designs.
In 2008, a successful computational design procedure was reported that yielded active enzyme catalysts for the Kemp elimination. Here, we studied these proteins together with a set of previously unpublished inactive designs to determine the sources of activity or lack thereof, and to predict which of the designed structures are most likely to be catalytic. Methods that range from quantum mechan...
متن کاملOptimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution.
Although de novo computational enzyme design has been shown to be feasible, the field is still in its infancy: the kinetic parameters of designed enzymes are still orders of magnitude lower than those of naturally occurring ones. Nonetheless, designed enzymes can be improved by directed evolution, as recently exemplified for the designed Kemp eliminase KE07. Random mutagenesis and screening res...
متن کاملA redox-mediated Kemp eliminase
The acid/base-catalysed Kemp elimination of 5-nitro-benzisoxazole forming 2-cyano-4-nitrophenol has long served as a design platform of enzymes with non-natural reactions, providing new mechanistic insights in protein science. Here we describe an alternative concept based on redox catalysis by P450-BM3, leading to the same Kemp product via a fundamentally different mechanism. QM/MM computations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 130 47 شماره
صفحات -
تاریخ انتشار 2008